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Abstract-A full 3-D numerical study is reported on natural convection of air in six heated-from-below 
parallelepipedic enclosures. A supercritical Rayleigh number (Ru = 8 x 103), was used in order to track 
the evolution of convective structures as a function of the enctosure’s aspect ratio (A) only. The six 
situations (1 < A < 5) exhibit a characteristic toroidal flow pattern which can be seen, at the lowest aspect 
ratio, as a unicellular structure which evolves to a multicellular combination of concentric roll-cells at 
higher aspect ratios. The transition from one convective structure to another has the features of a flow 
bifurcation controlled by A. The overall Nusselt number changed continuously when the aspect ratio was 
increased. At the lowest aspect ratios the change was significant, but further increments in A did not 

produce important variations in this parameter, in the range of aspect ratios studied. 

INTRODUCTION 

NATURAL convection phenomena of Newtonian fluids 
confined in differentially heated enclosures have 
attracted considerable attention in recent times, 
because of their wide range of thermal engineering 
applications, such as solar energy collectors, elec- 
tronic equipment cooling, solidification processes, to 
cite a few. From a physical point of view, natural 
convection in enclosures represents one of the simplest 
non-linear coupled flow problems providing an 
appropriate model to understand the role of flow 
instabilities and laminar flow transitions, especially in 
the well known heated-from-below situation (Ray- 
leigh-BBnard convection). 

This paper reports a full 3-D numerical study of the 
steady natural convection of a Boussinesq fluid of 
Prandtl number Pr = 0.71 (air) confined in a heated- 
from-below enclosure with passive vertical wails at 
Ra = 8 x lo3 as a finite approach to the Rayleigh- 
B&lard convection [l-3], in six situations charac- 
terized by their aspect ratio A. 

The main task in the present work is to determine 
the influence of geometrical domain over the flow and 
heat transfer mechanisms in the heated-from-below 
situation. This is done through successive changes in 
the aspect ratio of the cavity. 

In the Rayleigh-Bknard situation, convection starts 
when the governing parameter Ra, reaches a critical 
value RQ~. Davis f2] (theoretically) and Stork and 
Miller [3] (ex~~mentally) have found the marginal 
stability curves for different aspect ratios, finding that 
from A = 1 to A = 5, Ru, decreases rapidly from 
%7X 103 to ~2 x 103. For infinite parallel plates, 
Ra, = 1708 [l]. The influence of the lateral passive 
walls decreases as A increases. The value of 
Ra = 8 x lo3 therefore exceeds /ic6, for all aspect ratios 
we study. 

The presence of the vertical walls not only affects the 
critical parameter, but also determines the convective 
structure and preferred flow pattern. As it has been 
shown [2%4] in longitudinal cavities, the flow pattern 
always consists of a finite number of roll-cells with 
their axes parallel to the shorter dimension of the 
cavity. This conclusion has also been confirmed exper- 
imentally by Symond and Peck [5] and by Yang et 
al. [6] through numerical work. These results are 
expected to be stable if the selected Ra is near the 
critical one, otherwise flow patterns degenerate to a 
multiplicity of time-dependent solutions which 
strongly depend on the initial conditions of the prob- 
lem [7, 81. 

The closeness of Ra = 8 x lo3 to Ra, allows one to 
expect steady state solutions. As was pointed out in 
ref. [9], the experiments have clearly established that. 
beyond some value of Ra, say Ra,, the flow becomes 
time-dependent. Alhers [IO] has shown that Ra, 

approaches Ra, in cylindrical containers when the 
aspect ratio is increased. In the steady state, moreover, 
as Ra increases from Ra, to Ra, (Ra, < Ra < Ra,), a 

transition toward a different steady flow pattern can 
be expected [l I]. In our situation, the dynamical 
governing parameter Ra is kept constant, then the 
aspect ratio A plays the main role as a flow pattern 
and heat transfer selector of steady-state solutions. 

In this work the aspect ratios range from A = 1 to 
5, because the thermal instability force 6R, which is 
already high for A = 5, makes it unlikely to find 
steady-state solutions for A > 5. 

To determine the overall behavior of such a com- 
plex kind of flow, we have made an extensive global 
and local analysis of heat transfer and flow patterns, 
oriented to describe and explain the evolution of con- 
vective structures, in the 3-D Rayleigh-Btnard situ- 
ation, as a function of the aspect ratio A only. Cases 
which give steady state solutions will be studied. As it 
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NOMENCLATURE 

A aspect ratio, l/L, 

A, critical aspect ratio 

:: 
gravity vector 
length of square active walls 

L,, L, , L, cavity dimensions in X, Y, Z 
coordinates respectively 

n normal dimensionless coordinate 

N%G,l local Nusselt number 

N4MILIII overall Nusselt number 

n,., 11,. n; number of grid points at X. Y, Z 
coordinates, respectively 

P dimensionless pressure 
Pr Prandtl number, v/cc 

Ra Rayleigh number, gfiATL;‘/rx 
Ru, critical Rayleigh number at which 

convection starts 
Ra, critical Rayleigh number at which time- 

dependent solutions arise 

T,,, T, hot and cold temperatures 
respectively 

Cr, V. W velocity components at X, Y. % 

coordinates respectively 

L?,,,,, 3 ci,,,,,, maximum and minimum Cl 
velocity respectively 

IVI,,,;,, maximum velocity projection on a 
given plane of velocity field 

X, Y. Z dimensionless coordinates. 

Greek symbols 
thermal diffusivity 

; coefficient of thermal expansion 
6 R thermal instability force, Ra - Ra, 

AT temperature difference, 7’,, - r, 
0 dimensionless temperature. 

(T- T,)/(T, - r,) 
1’ kinematic viscosity. 

will be seen next, the flow pattern and corresponding 
overall heat transfer change notoriously by only 
changing the relative size of the active walls. The mul- 
tiple flow transitions found have the features of a flow 
bifurcation controlled by the aspect ratio A. 

PHYSICAL AND MATHEMATICAL 

FORMULATION 

Figure 1 shows a physical model of the heated- 
from-below system. A parahelepipedic enclosure with 

top and bottom walls at temperatures T, and T,, 
respectively and insulated vertical walls is considered. 
The 3-D dimensionless governing equations for an 
incompressible Boussinesq fluid (Pr = 0.71) which 
describe the dynamics of our phenomenon arc 

VIEW C z 
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FKZ. I. Physical situation and views. 

PC / , = 
?X, 

0 

(is;; = - ;; +Ra,PrO+ Pr[V’u,] (7) 
i / 

” ao 

‘3X, 
z V’@ 

where Ru, = Ru, Ru., = 0. Ru; = 0 and RN = 

g/lATL,?/vst corresponds to the Rayleigh number 
based on the temperature difference T,,- T, and 
on the distance L., between the opposite active walls. 
They are expressed in tensoriai form, and the velocity. 
pressure and temperature are scaled using as reference 
quantities x/L,, p(cc/L,)’ and (Th - T,), respectively. 
U, represents each of the three dimensionless velocity 
components U, V, W. The boundary conditions on 
the cavity are; the well known no-slip condition over 
the walls (U, = 0) and the following conditions for the 
temperature 0, 

(1 hot wall 
@= 

0 cold wall 

with iJ@/& = 0 at the passive walls. In any of the 
six configurations, it was possible to define the as- 
pect ratio A = //Ls as a characteristic geometrical 
parameter because we have worked only with square 
active walls. i.e. 1 = L,, = L= = AL,. 

The local Nusselt number at any point in the cavity 
is defined by Nuloca, = UO -a@{aX. The overall heat 
transfer NM,,,,,,, was computed by averaging the local 
Nusselt numbers over the active walls. 

NUMERICAL METHOD 

The numerical calculations were based on a primi- 
tive variable formulation of the governing equations 
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Table 1. Grid points used at each 
aspect ratio in the present numerical 

work 

A % x *.v x % 

1 21X21X21 
1.5 21x31~31 
2 16x31 x31 
3 16x46~46 
4 15X57X57 
5 13x61~61 

Table 2. Comparison test. Cubical side-heated cavity at 
Ra = 10’. It was considered the midplane Z = 0.5L, for 

comparison 

Author 

Fusegi 
de Vahl Davis 
Present work 

Grid U,,, V,,, Nu,,,,,,, 

32’ 3.5013 3.5170 1.085 
212 3.5890 3.6290 - 
213 3.5330 3.5328 1.084 

and the discretization of the physical domain was 
carried out through a control volume formulation 
incorporating the SIMPLER algorithm of Patankar 
with a power law scheme which has been previously 
described [ 121. The discrete equations were solved by 
an iterative t&diagonal solver with additional criteria 
for fast convergence [ 131. To ensure convergence, the 
Euclidian norm of the continuity equation residue 
and, at the same time, the maximum norm of the 
residue of the discretized energy equation, were 
required to fall below 10m3. All dependent variables 
were found to reach steady state values when these 
conditions were met. Nusselt numbers were averaged 

using Simpson’s rule. All calculations were carried out 
on an APOLLO 10000 work station. They were based 
on a Rayleigh number of Ra = 8 x lo3 and started 

with a linear temperature profile between hot and cold 
walls and a stagnant fluid as initial conditions. Table 
1 shows the corresponding three dimensional grids 
used at each aspect ratio in the present work. 

In order to confirm the consistency and accuracy 
of the computer code we made some comparisons 
with previous results of Fusegi et al. [14] for a side- 
heated cubical cavity (g I VT), and with the classical 
bench-mark 2-D numerical solution of de Vahl Davis 
[15] taking the midplane to contrast (Z = 0.5LL). 

Good agreement was found, especially with the work 
of Fusegi et al. [14], see Table 2 for associated differ- 

ences for the test solutions. An extensive grid refine- 

ment study was performed to determine the grid spac- 
ing capable to give grid-independent results. In doing 

so, we have solved the side-heated situation in a cub- 
ical cavity using uniform grids from 11 3 to 41 3 points. 
These calculations show that for the grids used in the 
present work (Table l), taking the finest test grid used 
(41’) as reference, the maximum associated error 
is 3.2% for overall Nusselt number and 2.2% for 
maximum and minimum velocities. The average of 
local Nusselt number over the hot and cold walls did 
not differ by more than 1.47% in any run. 

Great similarity (Fig. 2) was found with an exper- 
imental work [16] in the case of a heated-from-below 
situation for A = 2 at the midplane Z = 0.5L,. We 
took the map of isotherms as representative to check 
the ability of the code to represent convective struc- 
tures. In addition, the three dimensional flow field for 
aspect ratios A = 3,4 is very similar to that observed 
experimentally by Stork and Miiller [3] at Rayleigh 
numbers closely above the critical one (~3 x 103). 
The steady-state approach adopted implies that time- 
dependent states are detected when they occur, by a 
lack of convergence of the solutions, or by oscillations 
of the solutions between two or more states. In our 
calculations (Ra = 8 x 103), steady state solutions 
were not found beyond A = 5. 

RESULTS AND DISCUSSION 

Flow patterns and isograms for temperature (iso- 
therms) are shown in Figs. 3-7 and the different views 

are defined as follows: views A, B, C correspond to 
X-Y plane along the Z axis, Z-Y plane along the X 
axis and Z-X plane along the Y axis, respectively. Only 
views of types A and B will be shown, because views 
C and A are identical due to symmetry of convective 
structures. 

Flow patterns 

By inspecting our velocity field maps, we can sum- 
marize the flow patterns saying that a characteristic 
toroidal flow formation, which evolves from an uni- 
cellular nearly toroidal pattern to a multiple con- 
centric toroidal flow structure, controlled through sys- 
tematic increments of the aspect ratio A, is observed 
in all cases. This basic flow structure has a vertical 

FIG. 2. Comparison between case A = 2 view A at Z = 0.5L, of present work (a) with experimental work 
of Farhadieh and Tankin (b). 
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FIG. 3. Flow patterns (left) and isotherms (right) for A = I 
(a) View A at Z = O.lL;, IV],,, = 3.46; (b) view A at 
2 = 0.5L,, IV],,, = 9.09; (c) view B at X= O.lL,. 

IV%,, = 1.84; (d) view B at X = 0.9L,, IVI,,, = 2.85. 

symmetry axis passing through the cavity center. 
Because we have selected a small subset of aspect ratio 
values, in the present work it was not possible to 
predict the critical values A, at which the flow patterns 
change. This idea could be the central part of a future 
work. 

Cases A = 1, 1.5, 2. The three cases (A = I .5 not 
shown) present the same dynamical behavior (Figs. 
3, 4(a)-(d)). They show a single roll-ccl1 of nearly 

toroidal shape, which can be explained as follows. 
Hot fluid. due to buoyancy forces (Ru > Ru,), moves 
upward at the central region of the cavity, against 
viscous effects. When it rcachcs the vicinity of the top 
wall it turns radially towards the passive walls while it 
is cooled. Then it turns downward near those walls. 
Finally. it turns again and reccivcs heat from the hot 
wall. To satisfy the mass defect produced by the lightet- 
fluid moving at the central region. the heavier fuid is 
incorporated, near the bottom of the cavity. to the 
central ascension, closing the flow path. The cast 01 
aspect ratio A = 2 agreed very well with that of the 
work of Yang [7]. 

Maximum values for C’ velocity arc found at the 
vertical symmetry axis of the cavity (lighter fluid 
ascending region) and maximum transversal vclocitics 
li. W are found at the diagonal line of Y % plants 
near the cold wall. The latter kind of path obeys a 

search, by the thud, of minimum shear stress tra- 
jectories. Both the uppet- corners and central region 
otfcr minimum shear resistance. 

C‘NSOS .,I = 3, 4. The flow pattern JUST described 
changed abruptly when the aspect ratio was varied to 
.4 = 3 and then to A = 4 (Figs. 5, 6(a)(d)). Hem 
two concentric toroidal roll-cells of opposite rotation 
sense arc found to coexist. One of them fills the pcr- 
imetral region of the cavity and the other one (hcrc 
called internal roll-cell) is located at the central Lone. 
The dynamics of such a complex how, is very diffcrcnt 
from the previous cases. Here. hot fluid moves upward 
at the boundary between the two concentric roll-cells 
and downward at two regions: the central and per- 
imctral /ones of the cavity. When inspecting location 
for maximum C’ velocity values, it was found that the 
boundary between the perimctric and the internal roll- 
cell contains four Huid ascending focuses (Figs. 5. 
h(d)). and in those locations hot fluid reaches thcit 
maximum 0’ values (at .Y z 0.5) as in the preceding 
cases. On the contrary. maximum transverse C’. Ct’ 
velocities wcrc found in a similar region as in the 
preceding cases. This intricate behavior makes the 

most notorious difference between flow patterns of 
casts 11 = I. 1.5. 2 and ~1 = 3. 4. 

C‘l/.yc ,4 = 5. This aspect ratio induces an even more 
complex fluid pattern, as there exist three interacting 
concentric toroidal shape roll-cells. with alternatmg 
circulations. Hot fluid ascends at the central Lone of 
the cavjity. which belongs to the internal roll-cell. and 
at the roll-boundary bctwecn the pcrimetral and the 
int~rntcdistc roll-cell (Fig. 7(a) (d)). 

Cold fluid moves downward at two locations: at 
the vicinity of passive walls, like in all preceding cases. 
and at the descending roll boundary. It is very inter- 
esting to see that the general behavior of the internal 
roll-cell has the same appcarancc of cases A = I. 1.5. 
1 and the ascending roll boundary is similar to casts -1 
,4 = 3. 4. The local maximum of 1’ velocity is found 
(Table 3) (as in casts A = I, 1.5. 2). at the central 
zone ofthc cavity. and it is the htghcst one of all ~tspuct 
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FIG. 4. Flow patterns (left) and isotherms (right) for A = 2. (a) View A at 2 = l/15&,, [VI,,,,, = 14.51; (b) 
view A at 2 = 0.5L,, IV/,,,, = 27.52; (c) view B at X = 2/15L,, IV/,,,,, = 16,53;(d)viewBatX= 14/15L,, 

IVI,,, = 17.82. 

ratios investigated. The local maxima for transverse ancy forces which drive the fluid upward or 
V, W velocities are found at top planes near the cold downward. Owing to the restriction imposed by the 
wall, a region that forms part of the internal roll-cell. horizontal walls, the fluid reaching them is forced to 

move radially along these walls. When the fluid, in the 
Multiple flow pattern formation vicinity of an active wall, has been heated or cooled 

The formation of convective structures can be to a certain extent, the positive and negative buoyancy 
described as follows. In the natural convection forces begin to prevail and drive.the fluid away from 
regime, the fluid inside the cavity is subject to buoy- this wall. 
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lb) 

(d) 

FIG. 5. Flow patterns (left) and isotherms (right) for A = 3. (a) View A at Z = 2/45L=, /VI,,, = 14.75: 
(b) view A at Z = 22/4.51;;, [VI,,, = 28.98; (c) view B at X= 2,‘15L,, jVI,,,, = 20.26; (d) view B at 

X = 14/l&, /VI,,,,,, = 22.54. 
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FIG. 6. Flow patterns (up) and isotherms (down) for A = 4. (a) View A at Z = 1/28L,, IQ,,, = 17.61 ; (b) 
view A at Z = 0.5L,, IVl,,, = 25.96; (c) view B at X = 1/7L,, IV],,,,, = 24.86; (d) view B at X = 6/7L,, 

IVl,,, = 21.83. 

New rolls are formed from the cavity center when 
A is increased. This can be seen noting that the flow 
direction near the passive walls is always downward. 
Table 3 and Figs. 3(b), 4(b), 5(b) and 6(b) give infor- 
mation for the description of the life cycle of a new 
roll. A new roll starts with the establishment of a 
centrally ascending or descending flow, which turns 
radially outward when it reaches a horizontal wall. 

Table 3. Maximum and minimum 
vertical velocities vs aspect ratio 

A u tnax V mm 

1 9.682 -4.168 
1.5 28.461 - 15.818 
2 28.819 - 16.958 
3 22.794 -31.219 
4 25.455 -24.701 
5 30.609 -27.033 

When a roll is formed, the absolute value of velocity at 
the vertical axis (upward or downward) first increases 
with A, then it passes through a maximum and finally 
decreases at the end of the cycle. The initial increase 
is associated with the decrease of Ra, with A, which 

allows higher velocities to be obtained at higher A 

owing to the reduced shear effect of the passive walls. 
The later decrease in the absolute value of central 
vertical velocity is caused by an expansion of the cross 
section for central flow caused by the increase in A. 

(By comparing Figs. 5(b) and 6(b) we see that at 

A = 3, roughly 32% of the cross section is occupied 
by descending flow. The corresponding percentage at 
A = 4 is 43%.) The cycle of a roll ends with the 
formation of a new roll. In this condition, the fluid 
flowing upward or downward at the center will not 
necessarily turn radially outward when it reaches the 
upper or lower wall, respectively. Outward turning 
begins to be associated with a longer radial trajectory, 
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so a part of the fluid looks for a shorter path along 
the active wall and turns inward. This is the beginning 
of the formation of a new roll. 

The velocity changes involved in this process arc 
very signi~~~nt for the first two rolls. For the third 
one, when Ra, is very similar to Rcr, the vertical vei- 
ocity cannot have very important increases. A fourth 
roll has not been detected, because the flow structure 
appears to be time-dependent for A > 5. 

The mechanism of roll formation suggests the exis- 
tence of characteristic radial distances identifying the 
roll-boundaries, related with the critical aspect ratios 
at which the flow patterns change. 

Both the three dimensional Aow field and the cor- 
responding heat transfer rate change significantly 
when the aspect ratio is increased. so that, the overall 
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FIG. CL---Continued. 

Nusselt number grows rapidly at first, then it grows 
at a much slower rate as the number of roll-cells 
increases. 

Figures 8(a)-(f) show the local Nusselt number 
distribution at the central X-Y plane 

%;.5L,1. The groups of curves shown on each 
graph correspond to several values of X coordinate. 
From all graphs we can easily distinguish the essential 
role of lighter fluid ascending regions, where local 

maximum values of A$,,,, occur. This parameter 
reaches local maximum values at X = 0.5 in all tested 
cavities, located at roll boundaries in cases A = 3, 4 
and at the central region in cases A = 1, 1.5, 2, 5. The 
number of local maximum and minimum values of 

N%C,l depends exclusively on the number of inter- 
acting roll-cells. Cases A = 1, 1.5, 2 show only one 
maximum value at the central zone because of the 
central ascension of hot fluid (Figs. 8(a)-(c)). Cases 
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(b) 

Fto. 7. Flow patterns (up) and isotherms (down) for A = 5. (a) View A at 2 = li3OL,, /VI,,,, = 1X.19: (h) 
view A at Z = 0.5L_, IV],,,, = 30.45: (c) view B at X = 1/6L,,. IV/ ,“,, * = 21.16: (d) view B at X = 5/6L,. 

(V/ ,,,,, ~ = 24.02. 

A = 3. 4 exhibit two maximum values, which are 

found at the ascending roll boundary (Figs. 8(d), (e)). 
and case A = 5 shows three local maximum values. 
One of them is due to lighter fluid ascension at the 
central zone of the cavity, and the others are related 
to the lighter fluid which moves upward at a roll 
boundary (Fig. S(f)). The minimum values of Nu,,,,,,, 
are caused, in all the situations, by the downward 
movement of heavier fluid. 

Figure 9 shows the overall Nusselt number as a 
function of A. At low values of A, Nu,,,, ,,,, grows 
rapidly with the aspect ratio, tending to become more 
uniform at higher aspect ratios. 

The shape of the curve can be explained as follows : 
at any given aspect ratio, the value of critical Rayleigh 
number results from the balance between buoyancy 
forces and flow restrictions. At A = I. our 
Ra = 8 x lo3 exceeds the critical Rayleigh number 
only slightly, and therefore low velocity levels are 
found. As A grows to values of 1.5 and 2, Ra, sig- 
nificantly departs from Ra and, as a consequence, the 
vertical velocity levels are greatly increased (see Table 

3). leading to a rapid increase in heat transfer. As 

already explained [3], Ru, does not vary significantly 
with A for A > 2, so the velocity levels (Table 3) and 
overall Nusselt number (Fig. 9) are seen to vary at a 
slower rate. 

When the aspect ratio is increased with the number 
of roll cells kept constant (as happens at aspect 
ratios from I to 2), Nu,,,,,,, grows. This is associated 
with the already described mechanism of roll forma- 
tion. Initially, the increase in vertical velocity deter- 
mints a growth in Nu,,,,,;,,,. Later. the increase in the 
Row arca available for upward/downward flow. pro- 
duces the same effect. 

As A grows from 2 to 3. the flow pattern undergoes 
a transition from one to two roll cells. This is 
accompanied by a momentary decrease in Nu,,,,,,,,, 
associated to the change from a centrally ascending 
flow structure to a centrally descending one, with a 
high downward central velocity. The progressive 
reductions in this velocity allow an increase in Nu,,,,,,,, 
as A is increased. On the contrary, the transition from 
A = 4 to 5 (2 to 3 roll cells), is accompanied by a 
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FIG. ?.--Continued. 

slight heat transfer increase. This is associated with most evident result of these calculations is the flow 
the reestablishment of vertical upward flow at the pattern and heat transfer dependence on the cavity 
cavity center. aspect ratio. We found a nearly toroidal flow structure 

which evolves from an unicellular to a multicellular 

CONCLUDING REMARKS 
flow pattern, consisting of concentric roll-cells, when 
the aspect ratio was systematically increased from 

A detailed numerical study was performed on A = 1 io 5. For A = 1, i.5,2 the flow pattern consists 
3-D RayleighBknard convection at Ra = 8 x 103. The of a single, nearly toroidai roll-cell. When A = 3,4 we 
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FIG. 8. Local Nusselt number distribution for midplane X-Y at 2 = 0.X,. (a) A = 1, (b) A = 1.5, (c) 
A = 2, (d) A = 3, (e) A = 4, (f) A = 5. 
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FIG. 9. Evolution of overall Nusselt number with aspect 
ratio. 

observed two interacting concentric roll-cells. Finally, 

when A = 5, coexistence of three interacting roll-cells 
with alternating circulations was found. The mech- 

anism of formation of successive rolls was described. 

Only cases which give steady-state flow structures were 
reported. Heat transfer also changes when A is varied. 
The overall Nusselt number increases by a factor of 
almost two at first (from A = 1 to 2) then it tends 
to become more uniform as the number of roll-cells 
increases. The flow transition from one overall con- 
vective pattern to another has the features of a bifur- 
cation, which takes place at certain critical aspect ratio 
A,. It will be of great interest, in a future work, to find 
the critical aspect ratios associated to this kind of 
bifurcation. 
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